# **CPU-0550 (Stand Alone Boiler Control)**

Technical Data Sheet



# Submittal: HBX CPU-0550

Project: [

]

# **HBX Control Systems Inc. – Specification**

# Part 1: CPU-0550 Product

1. The Hydronic Control must be a full microprocessor control with at least an 8-bit, 8MHz integrated microprocessor chip.

2. The Control must be capable of utilizing a multi-color backlight character display.

3. The Control must be capable of the following Input/ Output Functions

- a. 2 x Dry Contact Demand Inputs
- b. 1 x Dry Contact/ Modulating Output Relay
- c. 3 x Temperature Sensor Inputs
- d. 3 x Dry Contact Relays

4. The Control must be capable of automatically calculating and resetting the heating fluid target temperature based on outdoor temperature (where applicable).

5. The Control must have the ability to program and control for Warm Weather Shut Down and Cold Weather Shut Down (where applicable).

6. The Control must be capable of using PMI (Pulse Modulated Injection).

7. The Control/unit must operate using three buttons and combination thereof with 5 modes

- i. Staging (Boiler staging with DHW)
- ii. Mixing (PMIp, Modulating or Floating Valve)
- iii. Differential setpoint (Solar thermal)
- iv. Pump Sequencer (Pump sequencing, pump exercising)
- v. Dual setpoint (one or two independent setpoints)

8. The Control must also be capable of controlling a single modulating boiler, or modulating mixing device.

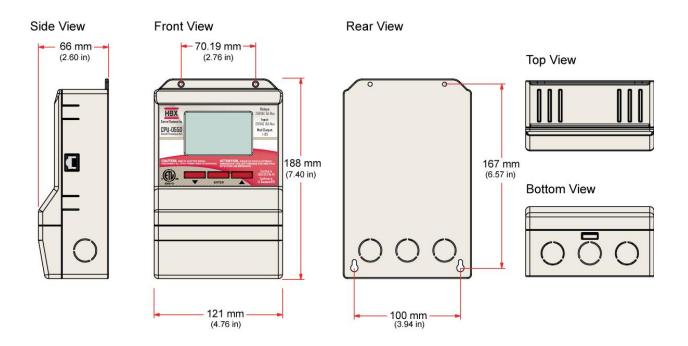
9. The Control programming must allow for DHW Priority.

10. The Control must allow for boiler rotation in Boiler mode.

11. The Control must be capable of running a solar dump application in Differential Setpoint mode.

12. The Control must be capable of controlling a floating action valve (power open/ power close) or an injection pump.

14. The Control must be capable of pump sequencing based on time, cycles and flow switch inputs. The Control must also have a dry contact alarm output, should the flow switch get tripped.


15. The control must be capable of controlling one or two independent setpoints. Each setpoint is setpoint is set up individually and each has its own thermistor input and relay outputs.

16. The Control unit must be ETL approved.

# **Part 2: Acceptable Products**

1. HBX CPU-0550 Control

# **Part 3: Physical Dimensions**





www.hbxcontrols.com

# Part 4: Technical Data, Main Parts & Labels

# Inputs/Outputs:

3 x Thermistor Input (10K Ohm)
2 x Miscellaneous Dry Contact Inputs
3 x Relay Dry Contact (240VAC, 10A) Outputs
1 x Modulating Output / 2A Dry Contact (1-10VDC)

# **Power supply:**

120 VAC +/- 10% 60 Hz 20A Max Fuse Protection: Resettable Fuse

#### Microprocessor:

8-bit, 8MHz

# Languages:

English

#### Display:

2.50" x 1.57" (63.5mm x 40mm) viewable area

## Weight:

0.89 lb. (0.408 kg)

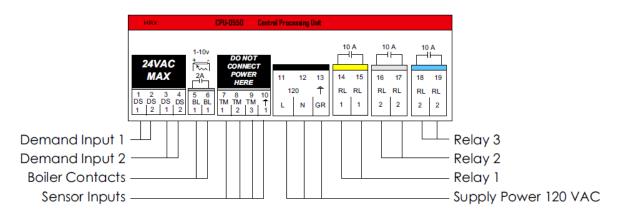
## **Supplied Parts:**

2 x HBX 029-0022 (Universal Brass Sensor) – 10K Ohm Thermistor, 12" lead wire 1 x HBX OUT-0100 (Outdoor/Indoor Sensor) – 10K Ohm Outdoor Sensor 2 x Cable ties 1 x terminal screwdriver (2.5mm)

#### **Dimensions:**

4.76" x 7.40" x 2.59" (121mm x 188mm x 66mm)

## **ETL Listings:**


Meets CSA C22.2 No. 24 Meets UL Standard 873 ETL Control No. 3068143

## Storage:

50°F to 104°F (10ºC to 40ºC)



## Pin Out / Terminal Block Labels:



#### Wiring

All signal wiring must be with a minimum of 18AWG wire at a maximum of 500ft.

#### 1, 2: Demand Signal 1

Apply heat demand from a dry contact, or 24VAC.

#### 3, 4: Demand Signal 2

Used for DHW or Setpoint demand.

#### 5, 6: Modulating / Boiler Contacts

Modulating or Boiler 1 output. Also used in differential setpoint output for modulating devices.

#### **Sensor Inputs**

7, 10: Primarily used for boiler temperature but also used for setpoint 1 temperature in Setpoint controls.

8, 10: Used for DHW or setpoint on boiler controls and low temperature system temperature on mixing control. Also used for setpoint 2 temperature.

9, 10: Outdoor temperature. Only on boiler and mixing controls.

## 14, 15: Relay 1

This relay is generally a pump contact or can be used as a second stage boiler or as a third stage boiler.

## 16, 17: Relay 2

Generally used as a pump contact valve or as a third stage boiler

#### 18, 19: Relay 3

Generally used as a system pump in boiler mode, injection or system pump in mixing mode or as an alarm in pump sequencer mode.

#### \*Relays 1, 2 and 3 are dry contacts and rated for a maximum of 10 Amps.



| Celsius | Fahrenheit | Ohms                     | Celsius | Fahrenheit | Ohms   | Celsius | Fahrenheit | Ohms  |
|---------|------------|--------------------------|---------|------------|--------|---------|------------|-------|
| -30     | -22        | 177,000                  | 15      | 59         | 15,714 | 60      | 140        | 2,488 |
| -29     | -20.2      | 166,342                  | 16      | 60.8       | 15,000 | 61      | 141.8      | 2,400 |
| -28     | -18.4      | 156,404                  | 17      | 62.6       | 14,323 | 62      | 143.6      | 2,315 |
| -27     | -16.6      | 147,134                  | 18      | 64.4       | 13,681 | 63      | 145.4      | 2,235 |
| -26     | -14.8      | 138,482                  | 19      | 66.2       | 13,071 | 64      | 147.2      | 2,157 |
| -25     | -13        | 130,402                  | 20      | 68         | 12,493 | 65      | 149        | 2,083 |
| -24     | -11.2      | 122,807                  | 21      | 69.8       | 11,942 | 66      | 150.8      | 2,011 |
| -23     | -9.4       | 115,710                  | 22      | 71.6       | 11,418 | 67      | 152.6      | 1,943 |
| -22     | -7.6       | 109,075                  | 23      | 73.4       | 10,921 | 68      | 154.4      | 1,876 |
| -21     | -5.8       | 102,868                  | 24      | 75.2       | 10,449 | 69      | 156.2      | 1,813 |
| -20     | -4         | 97,060                   | 25      | 77         | 10,000 | 70      | 158        | 1,752 |
| -19     | -2.2       | 91,588                   | 26      | 78.8       | 9,571  | 71      | 159.8      | 1,693 |
| -18     | -0.4       | 86,463                   | 27      | 80.6       | 9,164  | 72      | 161.6      | 1,637 |
| -17     | 1.4        | 81,662                   | 28      | 82.4       | 8,776  | 73      | 163.4      | 1,582 |
| -16     | 3.2        | 77,162                   | 29      | 84.2       | 8,407  | 74      | 165.2      | 1,530 |
| -15     | 5          | 72,940                   | 30      | 86         | 8,056  | 75      | 167        | 1,480 |
| -14     | 6.8        | 68,957                   | 31      | 87.8       | 7,720  | 76      | 168.8      | 1,431 |
| -13     | 8.6        | 65,219                   | 32      | 89.6       | 7,401  | 77      | 170.6      | 1,385 |
| -12     | 10.4       | 61,711                   | 33      | 91.4       | 7,096  | 78      | 172.4      | 1,340 |
| -11     | 12.2       | 58,415                   | 34      | 93.2       | 6,806  | 79      | 174.2      | 1,297 |
| -10     | 14         | 55,319                   | 35      | 95         | 6,530  | 80      | 176        | 1,255 |
| -9      | 15.8       | 52,392                   | 36      | 96.8       | 6,266  | 81      | 177.8      | 1,215 |
| -8      | 17.6       | 49,640                   | 37      | 98.6       | 6,014  | 82      | 179.6      | 1,177 |
| -7      | 19.4       | 47,052                   | 38      | 100.4      | 5,774  | 83      | 181.4      | 1,140 |
| -6      | 21.2       | 44,617                   | 39      | 102.2      | 5,546  | 84      | 183.2      | 1,104 |
| -5      | 23         | 42,324                   | 40      | 104        | 5,327  | 85      | 185        | 1,070 |
| -4      | 24.8       | 40,153                   | 41      | 105.8      | 5,117  | 86      | 186.8      | 1,037 |
| -3      | 26.6       | 38,109                   | 42      | 107.6      | 4,918  | 87      | 188.6      | 1,005 |
| -2      | 28.4       | 36,182                   | 43      | 109.4      | 4,727  | 88      | 190.4      | 974   |
| -1      | 30.2       | 34,367                   | 44      | 111.2      | 4,544  | 89      | 192.2      | 944   |
| 0       | 32         | 32,654                   | 45      | 113        | 4,370  | 90      | 194        | 915   |
| 1       | 33.8       | 31,030                   | 46      | 114.8      | 4,203  | 91      | 195.8      | 889   |
| 2       | 35.6       | 29,498                   | 47      | 116.6      | 4,042  | 92      | 197.6      | 861   |
| 3       | 37.4       | 28,052                   | 48      | 118.4      | 3,889  | 93      | 199.4      | 836   |
| 4       | 39.2       | 26,686                   | 49      | 120.2      | 3,743  | 94      | 201.2      | 811   |
| 5       | 41         | 25,396                   | 50      | 122        | 3,603  | 95      | 203        | 787   |
| 6       | 42.8       | 24,171                   | 51      | 123.8      | 3,469  | 96      | 204.8      | 764   |
| 7       | 44.6       | 23,013                   | 52      | 125.6      | 3,340  | 97      | 206.6      | 742   |
| 8       | 46.4       | 21,913                   | 53      | 127.4      | 3,217  | 98      | 208.4      | 721   |
| 9       | 48.2       | 20,883                   | 54      | 129.2      | 3,099  | 99      | 210.2      | 700   |
| 10      | 50         | 19,903                   | 55      | 131        | 2,986  | 100     | 212        | 680   |
| 11      | 51.8       | 18,972                   | 56      | 132.8      | 2,787  | 101     | 213.8      | 661   |
| 12      | 53.6       | 18,090                   | 57      | 134.6      | 2,774  | 102     | 215.6      | 643   |
| 13      | 55.4       | 17,255                   | 58      | 136.4      | 2,675  | 103     | 217.4      | 626   |
| 14      | 57.2       | 16,464                   | 59      | 138.2      | 2,579  | 104     | 219.2      | 609   |
|         |            | 1997-1992-1997-1997-1997 |         |            |        |         |            |       |

8

<u>ج</u>

# Part 5: HBX Sensor Temperature Conversion / Resistance Table

